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Abstract In this paper, we introduce an improved Chemostat model with Crowley–
Martin type functional response and time delays. By constructing Lyapunov function-
als, the global asymptotic stability of the equilibria is shown in the case of a single
species. The conditions for the global asymptotical stability of the model with time
delays are obtained via monotone dynamical systems in the case of two species. Our
results demonstrate that the effects of predator interference may result in coexistence
of two species.
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1 Introduction and statement of improved model

Many kinds of Chemostat models have been studied extensively by the specialists
[1,2]. There have been quite a few studies of Chemostat competition models ([1–7],
and the references there in). Almost all these papers prove that the principle of com-
petitive exclusion holds. That is to say, at most one species can survive. It is known
that there is not only competition between two-species but also mutual interference
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in a species. Considering mutual interference in a species, Yuan and Qiu [8], Qiu et
al. [9], Pang and Chen [10] studied Chemostat models with Beddington–DeAngelis
functional response. Yuan and Qiu [8] and Qiu et al. [9] demonstrated that mutual
interference in a species may result in coexistence of two species. The Beddington–
DeAngelis functional response is similar to the well-known Holling type II functional
response but has an extra term in the denominator that models mutual interference
in a species. In this model, individuals from a population of two or more predators
not only allocate time to searching for and processing prey, but also spend some time
engaging in encounters with other predators, resulting in a functional response that
gives an instantaneous. The models with Beddington–DeAngelis functional response
assume that handling and interfering are exclusive activities [11]. Crowley and Martin
[12] removed that assumption in what they called their “preemption” model, allowing
for interference among predators regardless of whether a particular individual is cur-
rently handling prey or searching for prey [13]. The Crowley–Martin type functional
response is classified as one of predator-dependent functional response, i.e., that are
functions of both prey and predator abundance because of predator interference. It is
assumed that predator-feeding rate decreases by higher predator density even when
prey density is high, and therefore the effects of predator interference in feeding rate
remain important all the time whether an individual predator is handling or searching
for a prey at a given instant of time. The per capita feeding rate in this formulation in
given by

μ(X, Y ) = ωX

1 + aX + bY + abXY
,

where ω, a, b are positive parameters that describe the effects of capture rate, han-
dling time and the magnitude of interference among predators, respectively, on the
feeding rate. Obviously, if a = 0, b = 0, then Crowley–Martin type functional
response reduces to a linear mass-action function response (or Holling type I functional
response); if a > 0, b = 0, then Crowley–Martin type functional response reduces
to a Michaelis–Menten (or Holling type II) functional response [14]. The Crowley–
Martin functional response is different from the traditional monotone or non-monotone
functional response in Chemostat systems. The predator–prey relationship also exists
between the nutrient concentration and the microorganism, the Crowley–Martin the-
ory may work in the experiment of the microbial continuous culture. In 2011, Sun
considered a class of Chemostat model with Crowley–Martin functional response, by
use of qualitative theory of ordinary differential equations, they got the conditions of
the micro-organism culture for success and failure [15].

It is well-known that the existence of time delays is inevitable in biology [16]. In
recent years, Chemostat models with time delays that account for the time lapsing
between the uptakes of nutrient by cells and the incorporation of this nutrient as
biomass have been given much attention ([3,17,18], and the references there in). As
far as we know, there are almost no literatures to discuss the Chemostat competition
model with Crowley–Martin type functional response and time delays. In this paper,
we will consider the following Chemostat system:
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⎧
⎪⎨

⎪⎩

Ṡ(t) = Q(S0 − S(t)) − ω1 S(t)X1(t)
α(1+a1 S(t)+b1 X1(t)+a1b1 X1(t)S(t)) − ω2 S(t)X2(t)

β(1+a2 S(t)+b2 X2(t)+a2b2 X2(t)S(t)) ,

Ẋ1(t) = −Q X1(t) + e−Qτ1 ω1 S(t−τ1)X1(t−τ1)
1+a1 S(t−τ1)+b1 X1(t−τ1)+a1b1 X1(t−τ1)S(t−τ1)

,

Ẋ2(t) = −Q X2(t) + e−Qτ2 ω2 S(t−τ2)X2(t−τ2)
1+a2 S(t−τ2)+b2 X (t−τ2)+a2b2 X2(t−τ2)S(t−τ2)

,

(1.1)

where S(t), X1(t) and X2(t) denote concentrations of the nutrient and the microor-
ganism at time t respectively; S0 denotes the input concentration of nutrient; Q denotes
the volumetric dilution rate (flow rate/volume); constant α, β denote the yield of the
nutrient, moreover, 0 < α, β < 1; the function μ(S, Xi ) = ωi Xi/(1 + ai S + bi Xi +
ai bi Xi S), (i = 1, 2) denotes the growth rate of the microorganism (i.e., Crowley–
Martin type functional response); each constant τi , (i = 1, 2) represents the time
delays involved in the conversion of the nutrient to viable species. Usually, as dis-
cussed in [3–6], the constant αi = e−Qτi and so αi xi (t − τi ) represents the biomass
of those microorganisms in species xi that consume nutrient τi units of time prior to
time t and that survive in the chemostat the τi units of time necessary to complete
the nutrient conversion process. However, in the proofs of this paper, we need only
require that the constant αi be positive, or even αi independent of τi are permitted.

The paper is organized as follows. In Sect. 2, we state preliminary results. In Sect.
3, we consider the asymptotic behavior of the model with a single species. In Sect.
4, we consider the global asymptotic behavior of two species. We conclude the paper
with a discussion in Sect. 5.

2 Preliminary analysis

In this section, we present the basic results on the boundedness of positive solutions
and the existence of equilibria. For simplicity, we nondimensionalize the system (1.1)
with the following scaling X1 = αS0x1, X2 = βS0x2, S = S0 y, t = T/Q, τi = ti/Q,
and still denotes T with t , ti with τi then the system (1.1) takes the form

⎧
⎪⎨

⎪⎩

ẏ(t) = 1 − y(t) − x1(t)y(t)
A1+B1 y(t)+C1x1(t)+D1x1(t)y(t) − x2(t)y(t)

A2+B2 y(t)+C2x2(t)+D2x2(t)y(t) ,

ẋ1(t) = −x1(t) + α1x1(t−τ1)y(t−τ1)
A1+B1 y(t−τ1)+C1x1(t−τ1)+D1x1(t−τ1)y(t−τ1)

,

ẋ2(t) = −x2(t) + α2x2(t−τ2)y(t−τ2)
A2+B2 y(t−τ2)+C2x2(t−τ2)+D2x2(t−τ2)y(t−τ2)

,

(2.1)

where A1 = Q/(S0ω1), A2 = Q/(S0ω2), B1 = Qa1/ω1, B2 = Qa2/ω2,
C1 = Qb1α/ω1, C2 = Qb2β/ω2, D1 = Qa1b1S0α/ω1, D2 = Qa2b2S0β/ω2 and
the initial conditions of (2.1) are

y(t) = ϕ0(t) ≥ 0, x1(t) = ϕ1(t) ≥ 0, x2(t) = ϕ2(t) ≥ 0,

ϕ2
0(t) + ϕ2

1(t) + ϕ2
2 �= 0, t ∈ [−τ, 0]. (2.2)

where τ = max{τ1, τ2}.
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Theorem 2.1 The solution (y(t), x1(t), x2(t))of system (2.1) with the initial condition
(2.2) is existent and non-negative on [0,+∞). Moreover,

y(t) + x1(t + τ1)

α1
+ x2(t + τ2)

α2
= 1 + ε(t).

Proof From the theory of local existence of solutions of general functional differential
equations [16], it has that y(t), x1(t) and x2(t) are existent on [0, ν) for some positive
constant ν. Let us first show that y(t) > 0 for t ∈ (0, ν). In fact, if not so, by ϕ(t) ≥ 0
and the continuity of y(t), there must be t1 ≥ 0 such that

y(t1) = 0, ẏ(t1) ≤ 0, and y(t) ≥ 0 (−τ ≤ t ≤ t1),

where ẏ(t1) denotes the right-hand derivative at t = t1, if t1 = 0. Hence, by the first
equation of system (2.1), it has that

ẏ(t1) = 1 − y(t1) −
2∑

i=1

αi xi (t1)y(t1)

Ai + Bi y(t1) + Ci xi (t1) + Di xi (t1)y(t1)
= 1 > 0.

This is a contradiction to ẏ(t1) ≤ 0. This shows that y(t) > 0 for any t ∈ (0, ν).
We further show that xi (t) ≥ 0, (i = 1, 2) for any t ∈ [0, ν). If not so, from

continuity of xi (t) on [−τi , ν) and ς being constant, there must exist t2 ≥ 0 such that

xi (t2) < 0, ẋi (t2) ≤ 0, and xi (t2 − ς) ≥ 0,

where ẋi (t2) denotes the right-hand derivative at t = t2, if t2 = 0. Hence, it follows
from the first equation of system (2.1), it has that

ẋi (t2)= xi (t2−τ)y(t2−τi )

Ai+Bi y(t2−τi )+Ci xi (t2−τi )+Di xi (t2−τi )y(t2−τi )
−xi (t2)≥ − xi (t2)>0.

This is a contradiction to ẋi (t2) ≤ 0. Therefore, it has that xi (t) ≥ 0, (i = 1, 2) for
any t ∈ [0, ν).

Next, let us prove that y(t), x1(t) and x2(t) are bounded. Let z(t) = y(t)+ x1(t+τ1)
α1

+
x2(t+τ2)

α2
. From (2.1) we obtain z′(t) = 1− z(t), from which we obtain z(t) = 1+ε(t),

where ε(t) = (z(0) − 1)e−t and ε(t) → 0 exponentially as t → +∞. Therefore,

y(t) + x1(t + τ1)

α1
+ x2(t + τ2)

α2
= 1 + ε(t),

which implies that the positive solutions of system (2.1) are bounded. Especially, the
solution (y(t), x1(t), x2(t)) is bounded on finite interval [0, ν). Therefore, it follows
from the theory of continuation of solutions for functional differential equations [16]
that the solution (y(t), x1(t), x2(t)) is existent and non-negative on [0,+∞). This
completes the proof of Theorem 2.1.
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Theorem 2.2 The positive quadrant 
 = {φ = (ϕ0, ϕ1, ϕ2) ∈ C | γ1γ2
γ1γ2+γ1+γ2

≤
ϕ0 ≤ 1, 0 ≤ ϕ1 ≤ α1

C1+D1
, 0 ≤ ϕ2 ≤ α2

C2+D2
} is positively invariant under (2.1),

where γi = (Ai (Ci + Di ) + αi Ci )/αi , i = 1, 2. Moreover,

lim sup
t→+∞

y(t) ≤ 1, lim sup
t→+∞

x1(t) ≤ α1

C1 + D1
, lim sup

t→+∞
x2(t) ≤ α2

C2 + D2
.

Proof For any φ = (ϕ0, ϕ1, ϕ2) ∈ 
, let (y(t), x1(t), x2(t)) be the solution of (2.1)
with the initial function φ. From Theorem 2.1, we have that for any t ≥ 0, y(t) ≤ 1,
xi (t) ≥ 0, (i = 1, 2). Now, we will prove that for any t ≥ 0, xi (t) ≤ αi

Ci +Di
, (i = 1, 2).

If not so, there is a t3 ≥ 0, such that xi (t) ≤ αi
Ci +Di

(t ≤ t3), xi (t3) = αi
Ci +Di

and
ẋi (t3) ≥ 0. From the second and the third equations of (2.1), we have

ẋi (t3) = −xi (t3) + xi (t3 − τi )y(t3 − τi )

Ai + Bi y(t3 − τ) + Ci xi (t3 − τi ) + Di xi (t3 − τi )y(t3 − τi )

≤ −xi (t3) + xi (t3 − τi )

Ai + Bi + (Ci + Di )xi (t3 − τi )

≤ −xi (t3) + xi (t3)

Ai + Bi + (Ci + Di )xi (t3)

= αi

Ci + Di

(

−1 + αi

Ai + Bi + αi

)

< 0,

which is a contradiction to ẋi (t3) ≥ 0. Moreover, by simple computation, we can get

lim sup
t→+∞

y(t) ≤ 1, lim sup
t→+∞

x1(t) ≤ α1

C1 + D1
, lim sup

t→+∞
x2(t) ≤ α2

C2 + D2
.

Next, we show that for any t ≥ 0, y(t) ≥ γ1γ2
γ1γ2+γ1+γ2

, where γi = (Ai (Ci + Di )

+ αi Ci )/αi , i = 1, 2. From the first equation of (2.1), we have

ẏ(t) ≥ 1 − y(t) −
α1

C1+D1
y(t)

A1 + B1 y(t) + α1C1
C1+D1

+ α1 D1
C1+D1

y(t)

−
α2

C2+D2
y(t)

A2 + B2 y(t) + α2C2
C2+D2

+ α2 D2
C2+D2

y(t)

≥ 1 −
(

1 + α1

A1(C1 + D1) + α1C1
+ α2

A2(C2 + D2) + α2C2

)

y(t).

Hence, y(t) ≥ γ1γ2
γ1γ2+γ1+γ2

, (γi = (Ai (Ci + Di ) + αi Ci )/αi , i = 1, 2), for any t ≥ 0.
Therefore, 
 is positively invariant with respect to (2.1). This completes the proof of
Theorem 2.2.
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Let

(A1) A1 + B1 < α1;
(A2) A2 + B2 < α2;
(A3) (α1 − B1)y∗ − A1 > 0;
(A4) (α2 − B2)y∗ − A2 > 0,

where y∗ denotes the unique positive root of h(y) = 1 − y − α1 y−A1−B1 y
α1(C1+D1 y)

− α2 y−A2−B2 y
α2(C2+D2 y)

= 0 in (0, 1). We have

Theorem 2.3 (1) (2.1) always has a washout equilibrium E0 = (1, 0, 0).
(2) The boundary equilibrium E10 = (y∗

1 , α1(1 − y∗
1 ), 0) exists if (A1) holds; the

boundary equilibrium E20 = (y∗
2 , 0, α2(1 − y∗

2 )) exists if (A2) holds, where y∗
i

denotes the unique positive root of f (y) = Diαi y2 + (αi − Bi + Ciαi − Diαi )y
− (Ai + Ciαi ) = 0, i=1, 2 in (0, 1).

(3) The unique positive equilibrium E+ = (y∗, (α1−B1)y∗−A1
C1+D1 y∗ ,

(α2−B2)y∗−A2
C2+D2 y∗ ) exists if

conditions (A1)–(A4) hold.

Proof An equilibrium point must satisfy the following equations:

⎧
⎪⎨

⎪⎩

0 = 1 − y − x1 y
A1+B1 y+C1x1+D1x1 y − x2 y

A2+B2 y+C2x2+D2x2 y ,

0 = −x1 + α1x1 y
A1+B1 y+C1x1+D1x1 y ,

0 = −x2 + α2x2 y
A2+B2 y+C2x2+D2x2 y .

(2.3)

We can get the washout solution E0 = (1, 0, 0) easily.
As far as the boundary equilibria are concerned, from (2.3), we have

⎧
⎨

⎩

1 − y − x1
α1

− x2
α2

= 0,

α1 y = A1 + B1 y + C1x1 + D1x1 y,

α2 y = A2 + B2 y + C2x2 + D2x2 y.

(2.4)

Thus, the analysis of the equation Diαi y2+(αi −Bi +Ciαi −Diαi )y−(Ai +Ciαi ) = 0
(i = 1, 2) is needed. We define

f (y) = Diαi y2 + (αi − Bi + Ciαi − Diαi )y − (Ai + Ciαi ) = 0 (i = 1, 2).

Because

f (0) = −(Ai + Ciαi ) < 0, f (1) = αi − (Ai + Bi ) (i = 1, 2).

Thus, if Ai + Bi < αi (i = 1, 2), f (1) > 0, there exists a unique positive root in
(0, 1). We denote y∗

i ∈ (0, 1) (i = 1, 2) as the positive root of f (y), and denote
E10 = (y∗

1 , α1(1 − y∗
1 ), 0) and E20 = (y∗

2 , 0, α2(1 − y∗
2 )) as the boundary equilibria.

As far as the positive equilibrium, from (2.3), we obtain

x1 = α1 y − A1 − B1 y

C1 + D1 y
, x2 = α2 y − A2 − B2 y

C2 + D2 y
.
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We define

h(y) = 1 − y − α1 y − A1 − B1 y

α1(C1 + D1 y)
− α2 y − A2 − B2 y

α2(C2 + D2 y)
.

Because

h(0) = 1 + A1

α1C1
+ A2

α2C2
> 0, h(1) = −α1 − A1 − B1

α1(C1 + D1)
− α2 − A2 − B2

α2(C2 + D2)
,

h′(y) = −1 − α1C1 − B1C1 + A1 D1

α1(C1 + D1 y)2 − α2C2 − B2C2 + A2 D2

α2(C2 + D2 y)2 .

If conditions (A1)–(A4) hold, h(1) < 0, h′(y) < 0. Hence, there exists a unique
positive equilibrium, we denote it as E+ = (y∗, (α1−B1)y∗−A1

C1+D1 y∗ ,
(α2−B2)y∗−A2

C2+D2 y∗ ), where,
y∗ is the unique positive root of h(y) in (0, 1). This completes the proof of Theorem
2.3.

3 The case of a single species

In this section, we analyze the asymptotic behavior of delay models with a single
species. Consider the delay models with a single species of the form

{
ẏ(t) = 1 − y(t) − x1(t)y(t)

A1+B1 y(t)+C1x1(t)+D1x1(t)y(t) ,

ẋ1(t) = −x1(t) + α1x1(t−τ1)y(t−τ1)
A1+B1 y(t−τ1)+C1x1(t−τ1)+D1x1(t−τ1)y(t−τ1)

,
(3.1)

From Theorem 2.2, it is enough to consider (3.1) on 
. For the asymptotical stability
of the equilibria, we have the following theorems.

Theorem 3.1 (1) When A1+ B1 > α1, the equilibrium E0 = (1, 0) is locally asymp-
totically stable for any time delay τ1 ≥ 0; when A1 + B1 < α1, the equilibrium
E0 = (1, 0) is unstable for any time delay τ1 ≥ 0; when A1 + B1 = α1, the trivial
solution of the linearization system of (3.1) about E0 = (1, 0) is stable.

(2) E10 = (y∗
1 , α1(1− y∗

1 )) is locally asymptotically stable for any time delay τ1 ≥ 0,
as long as it exits.

Proof Let Ê = (ŷ, x̂1) be arbitrary equilibrium. Then the characteristic equation
about Ê = (ŷ, x̂1) is given by

(λ + 1 + A)(λ + 1 − α1Ce−λτ1) + α1 ACe−λτ1 = 0, (3.2)

where

A = (A1 + C1 x̂1)x̂1

(A1 + B1 ŷ + C1 x̂1 + D1 x̂1 ŷ)2 , C = (A1 + B1 ŷ)ŷ

(A1 + B1 ŷ + C1 x̂1 + D1 x̂1 ŷ)2 .
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For the washout equilibrium E0 = (1, 0), then A = 0, C = 1
A1+B1

and (3.2) reduces
to

(λ + 1)

(

λ + 1 − α1

A1 + B1
e−λτ1

)

= 0. (3.3)

It follows from [16] that

(i) If A1 + B1 > α1, all roots of (3.3) have negative real parts for any time delay
τ1 ≥ 0, then E0 = (1, 0) is locally asymptotically stable;

(ii) If A1 + B1 < α1, (3.3) has roots which have positive real parts for any time delay
τ1 ≥ 0, then E0 = (1, 0) is unstable;

(iii) If A1 + B1 = α1, it has that except λ = 0, any roots of (3.3) have negative real part
for any time delay τ1 ≥ 0. Hence, the trivial solution of the linearization system
of (3.1) about E0 = (1, 0) is stable.

For the equilibrium E10 = (y∗
1 , α1(1 − y∗

1 )), from [15], E10 = (y∗
1 , α1(1 − y∗

1 ))

is locally asymptotically stable for τ1 = 0. By simple computations, it easily has that
(3.2) doesn’t has imaginary solution, then the stability of (3.1) does not change for
any time delay τ1 ≥ 0. Hence, E10 is locally asymptotically stable for any time delay
τ1 ≥ 0, as long as it exits. This completes the proof of Theorem 3.1.

Theorem 3.2 For any time delay τ1 ≥ 0, E0 = (1, 0) is globally asymptotically
stable for A1 + B1 > α1 and globally attractive for A1 + B1 = α1.

Proof We shall use Lyapunove–LaSalle invariance principle [16] to prove Theorem
3.2. Let us define a functional V on 
 as follows,

V (φ) = α1ϕ1(0) + α1

0∫

−τ1

ϕ1(θ)dθ. (3.4)

It is clear that V (ϕ) is continuous on the subset 
 and that the derivative of V (ϕ)

along the solution of (3.1) satisfies

V̇ (ϕ)|(3.1) = α1ϕ̇1(0) + α1ϕ1(0) − α1ϕ1(−τ1)

= α2
1 x1(t − τ1)y(t − τ1)

A1 + B1 y(t − τ1) + C1x1(t − τ1) + D1x1(t − τ1)y(t − τ1)
− α1x1(t − τ1)

= α1ϕ2(−τ1)−A1−B1ϕ2(−τ1) − C1ϕ1(−τ1) − D1ϕ1(−τ1)ϕ2(−τ1)

A1 + B1ϕ2(−τ1) + C1ϕ1(−τ1) + D1ϕ1(−τ1)ϕ2(−τ1)
α1ϕ1(−τ1)

≤ (α1 − A1 − B1)ϕ2(−τ1) − C1ϕ1(−τ1) − D1ϕ1(−τ1)ϕ2(−τ1)

A1 + B1ϕ2(−τ1) + C1ϕ1(−τ1) + D1ϕ1(−τ1)ϕ2(−τ1)
α1ϕ1(−τ1).(3.5)

When A1 + B1 ≥ α1, (α1 − A1 − B1)ϕ2(−τ1)−C1ϕ1(−τ1)− D1ϕ1(−τ1)ϕ2(−τ1) ≤
0. Hence, it has that for any time delay τ1 ≥ 0, V (ϕ)|(3.1) ≤ 0. This shows that
V (ϕ) is a Lyapunov functional of (3.1) on the subset 
. Define the subset G of 
 as
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G = {ϕ ∈ 
̄|V̇ (ϕ)|(3.1) = 0}, form (3.5), it has that

G = {ϕ ∈ 
̄|ϕ1(−τ1) = 0 or (α1 − A1 − B1)ϕ2(−τ1) − C1ϕ1(−τ1)

−Dϕ1(−τ1)ϕ2(−τ1) = 0}. (3.6)

Let M be the largest set in 
 which is invariant with respect to (3.1). Clearly, M is
not empty since E0 ∈ M . We have two cases to be discussed.

(1) If A1+B1 > α1, (α1− A1−B1)ϕ2(−τ1)−C1ϕ1(−τ1)−D1ϕ1(−τ1)ϕ2(−τ1) < 0.
Hence, G = {ϕ ∈ 
̄|ϕ1(−τ1) = 0}. For any ϕ ∈ M , let (y(t), x1(t)) be the
solution of (3.1) with the initial function ϕ. From the invariance of M , it has that
(yt , xt ) ∈ M ⊂ E for any t ∈ R. Thus, x1(t−τ1) = 0 for any t ∈ R, which implies
that x(t) ≡ 0 and ϕ1 ≡ 0 for any t ∈ R. From the first equation of system (3.1),
it has that ẏ(t) = 1 − y(t) for any t ∈ R. Since y(t) → 1 as t → +∞. Hence,
ϕ2 ≡ 1. Therefore, M = {(0, 1)} = {E0}. The classical Liapunov–LaSalle
invariance principle [16] shows that E0 is globally attractive for any time delay
τ1 ≥ 0. It follows from Theorem 3.1 that the washout equilibrium E0 of (3.1) is
globally asymptotically stable for any time delay τ1 ≥ 0.

(2) If A1 + B1 = α1, it has that (α1 − A1 − B1)ϕ2(−τ1) − C1ϕ1(−τ1)

− D1ϕ1(−τ1)ϕ2(−τ1) = −(C1 + D1ϕ2(−τ1))ϕ1(−τ1) = 0 is equivalent to
ϕ1(−τ1) = 0. By repeating the proof of case (1), it also has that M = {E0}.
It follows from the Liapuynov–LaSalle invariance principle that E0 is globally
attractive for any time delay τ1 ≥ 0. This completes the proof of Theorem 3.2.

Theorem 3.3 If the function g(x1(t), y(t)) is satisfied with

(g(x∗
1 , y∗) − g(x1(t), y(t)))(g(x∗

1 , y(t)) − g(x1(t), y(t))) ≤ 0, (3.7)

then, E10 = (y∗, x∗
1 ) is globally asymptotically stable for any time delay τ1 ≥ 0 and

A1 + B1 < α1, where

g(x1(t), y(t)) = x1(t)y(t)

A1 + B1 y(t) + C1x1(t) + D1x1(t)y(t)
.

Proof To prove global stability of the positive equilibrium, be inspired by Huang and
Takeuchi [19], we define a Lyapunov functional

V = V1 + V2 + V3, (3.8)
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where

V1 = α1 y(t) − y∗ − α1

y(t)∫

y∗

g(x∗
1 , y∗)

g(x∗
1 , ξ)

dξ + x1(t) − x∗
1 − x∗

1 ln
x1(t)

x∗
1

,

V2 = g(x∗
1 , y∗)

τ1∫

0

(
x1(t − θ)

x∗
1

− 1 − ln
x1(t − θ)

x∗
1

)

dθ,

V3 = α1g(x∗
1 , y∗)

τ1∫

0

(
g(x1(t − θ), y(t − θ))

g(x∗
1 , y∗)

− 1 − ln
g(x1(t − θ), y(t − θ))

g(x∗
1 , y∗)

)

dθ.

The time derivative of V1 along solution of (3.1) is given by

dV1

dt
|(3.1) = α1 y∗

(

1 − y(t)

y∗

) (

1 − g(x∗
1 , y∗)

g(x∗
1 , y(t))

)

+ α1g(x∗
1 , y∗) − α1g2(x∗

1 , y∗)
g(x∗

1 , y(t))

−α1g(x1(t), y(t)) + α1g(x∗
1 , y∗)g(x1(t), y(t))

g(x∗
1 , y(t))

+ α1g(x1(t − τ1), y(t − τ1))

−x1(t) − α1x∗
1 g(x1(t − τ1), y(t − τ1))

x1(t)
+ x∗

1 .

Notice g(x∗
1 , y∗) = x∗

1
α1

, the derivative of V2 and V3 satisfy

dV2

dt
= α1g(x∗

1 , y∗) d

dt

τ1∫

0

x1(t − θ)

x∗
1

− 1 − ln
x1(t − θ)

x∗
1

dθ

= α1g(x∗
1 , y∗)

τ1∫

0

d

dt

x1(t − θ)

x∗
1

− 1 − ln
x1(t − θ)

x∗
1

dθ

= −α1g(x∗
1 , y∗)

τ1∫

0

d

dθ

x1(t − θ)

x∗
1

− 1 − ln
x1(t − θ)

x∗
1

dθ

= −x1(t − τ1) + x1(t) + α1g(x∗
1 , y∗) ln

x1(t − τ1)

x1(t)
,

dV3

dt
= −α1g(x1(t − τ1), y(t − τ1)) + α1g(x1(t), y(t)) + α1g(x∗

1 , y∗)

× ln
g(x1(t − τ1), y(t − τ1)

g(x1(t), y(t))
).
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Hence, the time derivative of V along solution of (3.1) is given by

dV

dt
|(3.1) = α1 y∗

(

1 − y(t)

y∗
) (

1 − g(x∗
1 , y∗)

g(x∗
1 , y(t))

)

+ 2α1g(x∗
1 , y∗) − α1g2(x∗

1 , y∗)

g(x∗
1 , y(t))

+α1g(x∗
1 , y∗)g(x1(t), y(t))

g(x∗
1 , y(t))

−x1(t−τ1)−α1g(x∗
1 , y∗)g(x1(t−τ1), y(t−τ1))

x1(t)

+α1g(x∗
1 , y∗) ln

x1(t − τ1)

x1(t)
+ α1g(x∗

1 , y∗) ln
g(x1(t − τ1), y(t − τ1))

g(x1(t), y(t))

= α1 y∗
(

1− y(t)

y∗
)(

1− g(x∗
1 , y∗)

g(x∗
1 , y(t))

)

+α1g(x∗
1 , y∗) ln

(
x1(t−τ1)

x1(t)

g(x1(t − τ1), y(t − τ1))

g(x1(t), y(t))

)

+α1g(x∗
1 , y∗) ×

(

2− g(x∗
1 , y∗)

g(x∗
1 , y(t))

− g(x1(t−τ1), y(t−τ1))

x1(t)
− x1(t−τ1)

x∗
1

+ g(x1(t), y(t))

g(x∗
1 , y(t))

)

.

Here by using

ln

(
x1(t − τ1)

x1(t)
· g(x1(t − τ1), y(t − τ1))

g(x1(t), y(t))

)

= ln
g(x1(t − τ1), y(t − τ1))

x1(t)
+ ln

x1(t − τ1)

x∗
1

+ ln
g(x∗

1 , y∗)g(x∗
1 , y(t))

g(x∗
1 , y(t))g(x1(t), y(t))

,

dV

dt
|(3.1) = α1 y∗

(

1 − y(t)

y∗

) (

1 − g(x∗
1 , y∗)

g(x∗
1 , y(t))

)

+α1g(x∗
1 , y∗)

(

1 − g(x1(t − τ1), y(t − τ1))

x1(t)
+ ln

g(x1(t − τ1), y(t − τ1))

x1(t)

)

(3.9)

+α1g(x∗
1 , y∗)

(

1 − x1(t − τ1)

x∗
1

− ln
x1(t − τ1)

x∗
1

)

(3.10)

+α1g(x∗
1 , y∗)

(

1 − g(x∗
1 , y∗)

g(x∗
1 , y(t))

· g(x∗
1 , y(t))

g(x1(t), y(t))
+ ln

(
g(x∗

1 , y∗)
g(x∗

1 , y(t))
· g(x∗

1 , y(t))

g(x1(t), y(t))

))

(3.11)

+α1g(x∗
1 , y∗)

(

−1 + g(x∗
1 , y∗)

g(x∗
1 , y(t))

· g(x∗
1 , y(t))

g(x1(t), y(t))
− g(x∗

1 , y∗)
g(x∗

1 , y(t))
+ g(x1(t), y(t))

g(x∗
1 , y(t))

)

. (3.12)

From the monotonicity of the function g(x, y) with respect to y, we have

y∗
(

1 − y(t)

y∗

) (

1 − g(x∗
1 , y∗)

g(x∗
1 , y(t))

)

≤ 0,

and from the condition (3.8), we have

g(x∗
1 , y∗)

(
g(x∗

1 , y∗)
g(x∗

1 , y(t))
− g(x1(t), y(t))

g(x∗
1 , y(t))

) (
g(x∗

1 , y(t))

g(x1(t), y(t))
− 1

)

≤ 0.

Since the function f (x) = 1 − x − ln x is always non-positive for any x > 0, and
f (x) = 0 if and only if x = 1. Therefore, the terms (3.10)–(3.12) are always non-
positive.

123



1242 J Math Chem (2013) 51:1231–1248

Hence, the functional V satisfies all the conditions of Kuang [16, Corollary 5.2,
p. 30]. This proves that E10 is globally asymptotically stable under the conditions
A1 + B1 < α1 and (3.8). It completes the proof of Theorem 3.3.

4 The case of two species

In this section, we will use the same method as [9] to study the globally asymptotic
behavior of system (2.1). In what follows, we state three elementary lemmas, which
will prove to be useful.

Lemma 1 [5] Let f : R+ → R+ be a dierentiable function. If lim inf t→+∞ f (t) <

lim supt→+∞ f (t), then there are sequences {tm} ↑ +∞ and {sm} ↑ +∞ such that
for all m

f (tm) → lim sup
t→+∞

f (t) as m → +∞, f ′(tm) = 0,

f (sm) → lim inf
t→+∞ f (t) as m → +∞, f ′(sm) = 0.

Lemma 2 [5] Let a ∈ (−∞,+∞), and f : [a,+∞) → R be a differentiable
function. If limt→+∞ f (t) exists (finite) and the derivative function f ′(t) is uniformly
continuous on (a,+∞), then, limt→+∞ f (t) = 0.

Let X be a complete metric space. Suppose that X0 ⊂ X, X0 ⊂ X, X0 ⋂
X0 = ∅.

Assume that T (t) is a C0 semi-group on X satisfying

{
T (t) : X0 → X0,

T (t) : X0 → X0.
(4.1)

Let Tb(t) = T (t)|X0 and let Ab be the global attractor for Tb(t). Ãb = ⋃
x∈Ab

ω(x)

will be called acyclic if there exists some isolated covering M = ⋃k
i=1 Mi of Ãb such

that no subset of the M ′
i s forms a cycle. An isolated covering satisfying this condition

will be called acyclic.

Lemma 3 [21] Suppose that T (t) satisfies (4.1). If

(i) There is a t0 > 0 such that T (t) is compact for t > t0.
(ii) T (t) is point dissipative in X.
(iii) Ab is isolated and has an acyclic covering M where

M = {M1, M2, . . . , Mn}.

(iv) W s(Mi )
⋂

X0 = ∅ for i = 1, 2, . . . , n.

Then X0 is a uniform repellor with respect to X0, i.e., there is an ε > 0 such that
for any x ∈ X0, lim inf t→+∞ d(T (t)x, X0) ≥ ε, where d is the distance of T (t)x
from X0.

123



J Math Chem (2013) 51:1231–1248 1243

Theorem 4.1 If conditions (A1)–(A4) hold, then system (2.1) is uniformly persistent,
i.e., there exists a constant γ > 0, independent of initial conditions, such that

lim inf
t→+∞ S(t) ≥ γ, lim inf

t→+∞ x1(t) ≥ γ, lim inf
t→+∞ x2(t) ≥ γ.

Proof We begin by showing that the boundary planes of R3+ repel the positive solutions
to system (2.1) uniformly. Let us choose

Wi = {(ϕ0, ϕ1, ϕ2) ∈ C+([−τ, 0], R3+) : ϕi (θ) ≡ 0, θ ∈ [−τ, 0]}

for i = 0, 1, 2. If X0 = W0
⋃

W1
⋃

W2 and X0 = intC([−τ, 0], R3+), it suffices to
show that there exists an γ0 > 0 such that any solution xt of system (2.1) initiating from
X0, lim inf t→+∞ d(xt , X0) ≥ γ0. To this end, we verify below that the conditions
of Lemma 3 are satisfied. It is easy to see that X0 and X0 are positively invariant.
Moreover, conditions (i) and (ii) of Lemma 3 are clearly satisfied. Thus we only
need to verify conditions (iii) and (iv). There are three constant solutions E0, E10
and E20 in X0, corresponding, respectively, to y(t) = 1, x1(t) = 0, x2(t) = 0,
y(t) = y∗

1 , x1(t) = α1(1− y∗
1 ), x2(t) = 0, y(t) = y∗

2 , x1(t) = 0, x2(t) = α2(1− y∗
2 ).

From Theorem 3.3, it is easy to see that if invariant sets E0, E10 and E20 are isolated,
{E0, E10, E20} is isolated and is an acyclic covering. The fact that E0, E10 and E20
are isolated will follow from the following proof.

We now show that, W s(E0)
⋂

X0 = ∅, W s(E10)
⋂

X0 = ∅ and W s(E20)
⋂

X0 = ∅. We restrict our attention to the first and second equations, since the proof for
the third is similar to the proof for the second. If it is not true, i.e., W s(E0)

⋂
X0 = ∅,

then there exists a positive solution (y(t), x1(t), x2(t)) to system (2.1) such that
(y(t), x1(t), x2(t)) → (1, 0, 0) as t → +∞. Let ε be sufficiently small. Then we
have

{
ẏ(t) ≥ 1 − y(t) − x1(t)y(t)

A1+B1 y(t)+C1x1(t)+D1x1(t)y(t) − ε,

ẋ1(t) = −x1(t) + α1x1(t−τ1)y(t−τ1)
A1+B1 y(t−τ1)+C1x1(t−τ1)+D1x1(t−τ1)y(t−τ1)

.
(4.2)

Let us consider

{
ẏ(t) = 1 − ε − y(t) − x1(t)y(t)

A1+B1 y(t)+C1x1(t)+D1x1(t)y(t) ,

ẋ1(t) = −x1(t) + α1x1(t−τ1)y(t−τ1)
A1+B1 y(t−τ1)+C1x1(t−τ1)+D1x1(t−τ1)y(t−τ1)

.
(4.3)

For convenience, we rewrite system (2.1) and (4.3) as

ẋ(t) = f1(t, xt ), and ẋ(t) = f2(t, xt ),

respectively. From Theorem 3.3, it can be seen that system (4.3) has unique equilibrium
E ′(ȳ1, x̄1), x̄1 > 0 which is globally asymptotically stable. Note that y(t, t0, f1) ≥
y(t, t0, f2), x1(t, t0, f1) ≥ x1(t, t0, f2) and limt→+∞ x1(t, t0, f2) = x̄1. This is a
contradiction. Hence W s(E0)

⋂
X0 = ∅.
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Suppose that there exists a positive solution (y(t), x1(t), x2(t)) to system (2.1) such
that (y(t), x1(t), x2(t)) → (y∗

1 , α1(1 − y∗
1 ), 0) as t → +∞. Since A2 + B2 ≤ α2,

we can choose κ > 0 small enough such that
α2(y∗

1 −κ)

A2+B2(y∗
1 −κ)

> 1. Let t4 > 0 such that

y∗
1 − κ < y(t) for t > t4. Then we have

ẋ2(t) ≥ −x2(t) + α2x2(t − τ2)(y∗
1 − κ)

A2 + B2(y∗
1 − κ) + C2x2(t − τ2) + D2x2(t − τ2)(y∗

1 − κ)

for t > t4. Let us consider

ẋ(t) = −x(t) + α2x(t − τ2)(y∗
1 − κ)

A2 + B2(y∗
1 − κ) + C2x(t − τ2) + D2x(t − τ2)(y∗

1 − κ)
. (4.4)

Let x0 > 0 be small enough such that x0 < x2(t4). Note that
α2(y∗

1 −κ)

A2+B2(y∗
1 −κ)

> 1.

Hence, if x(t) is a solution to (4.4) satisfying x(t4) = x0, it follows that x(t) → +∞.
Note that x2(t) ≥ x(t) for t > t4, so that we have x2(t) → +∞. This contradicts
x2(t) → 0. At this time, we are able to conclude from Lemma 3 that X0 repels the
positive solutions to (2.1) uniformly. Incorporating this into Theorem 2.2, we can see
that system (2.1) is permanent.

Theorem 4.2 If conditions (A1)–(A4) hold, then the positive equilibrium E+ is glob-
ally asymptotically stable.

Proof From Theorem 2.3, there exists a unique positive equilibrium. Let us define

X1(t) = x1(t + τ1)

α1
, X2(t) = x2(t + τ2)

α2
.

It follows from Theorem 2.1 that

y(t) = 1 + ε(t) − X1(t) − X2(t).

Therefore (X1(t), X2(t)) satisfies the following two-dimensional delay differential
equations:

⎧
⎨

⎩

Ẋ1(t)= − X1(t)+ α1 X1(t−τ1)(1+ε(t)−X1(t)−X2(t))
A1+B1(1+ε(t)−X1(t)−X2(t))+C1α1 X1(t−τ1)+D1α1 X1(t−τ1)(1+ε(t)−X1(t)−X2(t)) ,

Ẋ2(t)= − X2(t)+ α2 X2(t−τ2)(1+ε(t)−X1(t)−X2(t))
A2+B2(1+ε(t)−X1(t)−X2(t))+C2α2 X2(t−τ2)+D2α2 X2(t−τ2)(1+ε(t)−X1(t)−X2(t)) ,

(4.5)

It is obvious that E+ = (X∗
1, X∗

2) is the unique positive equilibrium of (4.5), where

X∗
1 = x∗

1
α1

, X∗
2 = x∗

2
α2

. Now we only need to show that E+ = (X∗
1, X∗

2) is globally
asymptotically stable.
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First we will show that E+ = (X∗
1, X∗

2) is a locally stable point of system (4.5).
Let us define the following auxiliary functions:

{
F(X1, X2, Z) = −X1 + α1 X1(1+Z−X1−X2)

A1+B1(1+Z−X1−X2)+C1α1 X1+D1α1 X1(1+Z−X1−X2)
,

G(X1, X2, Z) = −X2 + α2 X2(1−Z−X1−X2)
A2+B2(1−Z−X1−X2)+C2α2 X2+D2α2 X2(1−Z−X1−X2)

,

(4.6)

After some algebra, we can obtain

∣
∣
∣
∣
∣

∂ F(X1,X2,Z)
∂ X1

∂ F(X1,X2,Z)
∂ X2

∂G(X1,X2,Z)
∂ X1

∂G(X1,X2,Z)
∂ X2

∣
∣
∣
∣
∣
(X∗

1 ,X∗
2 ,0)

> 0. (4.7)

Because of the implicit function theorem, we can conclude that there are two functions

X1 = X1(Z), X2 = X2(Z)

defined by (4.6) in the neighborhood of Z = 0. However,

X ′
1(Z)|(X∗

1 ,X∗
2 ,0) = −

∣
∣
∣
∣
∣

∂ F(X1,X2,Z)
∂ Z

∂ F(X1,X2,Z)
∂ X2

∂G(X1,X2,Z)
∂ Z

∂G(X1,X2,Z)
∂ X2

∣
∣
∣
∣
∣

/∣
∣
∣
∣
∣

∂ F(X1,X2,Z)
∂ X1

∂ F(X1,X2,Z)
∂ X2

∂G(X1,X2,Z)
∂ X1

∂G(X1,X2,Z)
∂ X2

∣
∣
∣
∣
∣

> 0,

X ′
2(Z)|(X∗

1 ,X∗
2 ,0) = −

∣
∣
∣
∣
∣

∂ F(X1,X2,Z)
∂ X1

∂ F(X1,X2,Z)
∂ Z

∂G(X1,X2,Z)
∂ X1

∂G(X1,X2,Z)
∂ Z

∣
∣
∣
∣
∣

/∣
∣
∣
∣
∣

∂ F(X1,X2,Z)
∂ X1

∂ F(X1,X2,Z)
∂ X2

∂G(X1,X2,Z)
∂ X1

∂G(X1,X2,Z)
∂ X2

∣
∣
∣
∣
∣

< 0.

Let ε > 0, and define the following comparison differential equations:

{
Ẋ1(t) = −X1(t) + α1 X1(t−τ1)(1+ε−X1(t)−X2(t))

A1+B1(1+ε−X1(t)−X2(t))+C1α1 X1(t−τ1)+D1α1 X1(t−τ1)(1+ε−X1(t)−X2(t)) ,

Ẋ2(t) = −X2(t) + α2 X2(t−τ2)(1−ε−X1(t)−X2(t))
A2+B2(1−ε−X1(t)−X2(t))+C2α2 X2(t−τ2)+D2α2 X2(t−τ2)(1−ε−X1(t)−X2(t)) ,

(4.8)

{
Ẋ1(t) = −X1(t) + α1 X1(t−τ1)(1−ε−X1(t)−X2(t))

A1+B1(1−ε−X1(t)−X2(t))+C1α1 X1(t−τ1)+D1α1 X1(t−τ1)(1−ε−X1(t)−X2(t)) ,

Ẋ2(t) = −X2(t) + α2 X2(t−τ2)(1+ε−X1(t)−X2(t))
A2+B2(1+ε−X1(t)−X2(t))+C2α2 X2(t−τ2)+D2α2 X2(t−τ2)(1+ε−X1(t)−X2(t)) ,

(4.9)

When ε is sufficiently small, by the implicit function theorem, (4.8) and (4.9) admits
unique positive equilibria E+(X∗

1+, X∗
2−) and E−(X∗

1−, X∗
2+), respectively. Further-

more, from the sign of X1(Z), X2(Z), it follows that E− <k E+ <k E+ and
E− → E+, E+ → E+ as ε → 0, where “<k” (“≤k”) is a notation, which means
that if z = (x, y) and z̄ = (x̄, ȳ), we write z <k z̄(≤k z̄) if x < x̄(x ≤ x̄) and
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y > ȳ(y ≥ ȳ). Obviously, (4.6), (4.8) and (4.9) are competitive systems. For conve-
nience, let us rewrite system (4.6), (4.8), (4.9) as

Ẋ = fε(t)(t, X), Ẋ = f+ε(t, X), Ẋ = f−ε(t, X),

respectively. From the comparison theorem, we have

X (t, t0, f−ε, ϕ) ≤k X (t, t0, fε(t),ϕ) ≤k X (t, t0, f+ε, ϕ).

Thus we have Ê− <k X (t, t0, fε(t),ϕ) <k Ê+ for all ϕ such that Ê− <k ϕ <k Ê+
and t > t0. This implies that the positive equilibrium E+ = (X∗

1, X∗
2) is a local stable

point.
Second, we will show that the positive equilibrium E+ = (X∗

1, X∗
2) is global

attractor of system (4.5). Considering the following limiting system:

{
Ẋ1(t) = −X1(t) + α1 X1(t−τ1)(1−X1(t)−X2(t))

A1+B1(1−X1(t)−X2(t))+C1α1 X1(t−τ1)+D1α1 X1(t−τ1)(1−X1(t)−X2(t)) ,

Ẋ2(t) = −X2(t) + α2 X2(t−τ2)(1−X1(t)−X2(t))
A2+B2(1−X1(t)−X2(t))+C2α2 X2(t−τ2)+D2α2 X2(t−τ2)(1−X1(t)−X2(t)) ,

(4.10)

Let us rewrite system (4.10) as

Ẋ = g(t, x).

System (4.10) is a competitive system and has a unique positive equilibrium E+ =
(X∗

1, X∗
2) and two boundary equilibria E10 = (X∂

1 , 0), E20 = (0, X∂
2), where X∂

1 =
x∗

1
α1

, X∂
2 = x∗

2
α2

. From Theorems 2.2 and 4.1 it follows that there exists a ζ > 0 such that

ζ < lim inf
t→+∞ X1(t) ≤ lim sup

t→+∞
X1(t) <

α1

C1 + D1
− ζ,

ζ < lim inf
t→+∞ X2(t) ≤ lim sup

t→+∞
X2(t) <

α2

C2 + D2
− ζ.

Thus, without loss of generality, we can always assume that the initial data (ϕ1, ϕ2) for
system (4.10) satisfy (ζ̂ , X̂∂

2 − ζ̂ ) ≤k (ϕ1, ϕ2) ≤k (X̂∂
1 − ζ̂ , ζ̂ ). Let φ1 = (ζ̂ , X̂∂

2 − ζ̂ )

and φ2 = (X̂∂
1 − ζ̂ , ζ̂ ). Then there exists a t1 > 0 such that φ1 <k Xt1(t, φ1, g) and a t2

such that Xt2(t, φ2, g) <k φ2. Therefore X (t, φ1, g) and X (t, φ2, g) both converge to
the unique equilibrium E+ = (X∗

1, X∗
2) as t → ∞. For any initial data ϕ that satisfies

φ1 ≤k ϕ ≤k φ2 monotonicity implies that X (t, φ1, g) ≤k X (t, ϕ, g) ≤k X (t, φ2, g)

for t ≥ 0. Since X (t, φ1, g) and X (t, φ2, g) both converge to the unique equilibrium
E+ = (X∗

1, X∗
2) as t → ∞, it follows that X (t, ϕ, g) converges to E+ = (X∗

1, X∗
2) as

t → ∞, i.e., the positive equilibrium E+ = (X∗
1, X∗

2) is a global attractor of system
(4.10), furthermore, E+ = (X∗

1, X∗
2) is a global equi-attractor of system (4.10). Let

σ1 be arbitrary, for any initial data ϕ satisfying φ1 ≤k ϕ ≤k φ2, there exists a T1,
which is only dependent on σ1 such that (X1(t), X2(t)) ∈ U ((X∗

1, X∗
2), σ1

2 ). Note that
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the solution of differential equations depends continuously on the parameters. Hence
there exists a σ2 > 0 such that

|X (t, ϕ, f±ε) − X (t, ϕ, g)| <
σ1

2

for all ε < σ2 and t ∈ [0, T1]. Thus there exists a T2 such that (X1(t, ϕ, fε(t)),
X2(t, ϕ, fε(t))) ∈ U ((X∗

1, X∗
2), σ1) for t > T2 and any initial data ϕ satisfies φ1 ≤k

ϕ ≤k φ2, i.e., the positive equilibrium E+ = (X∗
1, X∗

2) is global attractor of system
(4.5). This completes the proof.

In a similar way, we can show the following theorems.

Theorem 4.2 If conditions (A1)–(A3) and the reverse of (A4) hold, then the boundary
equilibrium E10 = (y∗

1 , α1(1 − y∗
1 ), 0) is globally asymptotically stable.

Theorem 4.3 If conditions (A1), (A2), (A4) and the reverse of (A3) hold, then the
boundary equilibrium E20 = (y∗

2 , 0, α2(1 − y∗
2 )) is globally asymptotically stable.

5 Discussion

In this paper we analyze a Chemostat model with the Crowley–Martin functional
response and delayed response in growth. This model incorporates time delays that
allow for cellular components of each competing species to be structured to include
unassimilated or stored nutrient. Then, by use of the traditional analysis technique for
transcendental equations [16], we give the local asymptotic stability of the equilibria
of (3.1). Based on Lyapunov–LaSalle principle for functional differential equations,
we completely obtain global asymptotic stability and global attraction of the washout
equilibrium of (3.1). Be inspired by Huang and Takeuchi [19], we construct a Lya-
punov functional and show that the positive equilibrium of (2.1) is globally asymptot-
ically stable. Our results show that time delay is factually harmless for the local and
global asymptotic stability of the equilibria of (2.1). Finally, using the same method
as [9], we obtain the global stability of the system (2.1) via monotone dynamical sys-
tems. The results in the paper include some known results for Holling type I and II
functional response models as special cases. In theory, if A = 0, D = 0, (2.1) will
be the Michaelis–Menten ratio-dependent model [20]; if D = 0, (2.1) will be the
Beddington–DeAngelis model [9].
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